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Abstract

Many-body perturbation theory is applied to compute thesipsaticle electronic structures and the
optical-absorption spectra (including excitonic eff¢dts several transparent conducting oxides. We dis-
cuss HSEG\W, results for band structures, fundamental band gaps, aectiet electron masses of MgO,
Zn0O, CdO, Sn@, SnO, Inp03, and SiQ. The Bethe-Salpeter equation is solved to account for @xcit
effects in the calculation of the frequency-dependent igihem coefficients. We show that the HSGgWp
approach and the solution of the Bethe-Salpeter equaterveny well-suited to describe the electronic
structure and the optical properties of various transpam@mducting oxides in good agreement with exper-

iment.

PACS numbers: 71.15.Qe, 71.20.Ps, 71.35.Cc, 78.20.B#) 8
Keywords: ab initio electronic structure methods, Betladp&ter equation, excitons, fundamental gaps, effective

masses, optical absorption



. INTRODUCTION

Transparent conducting oxides (TCOs) combine high tranesiest in the visible spectral range
with high electrical conductivity under ambient conditidr? Post-transition-metal compounds
such as ZnO, Is03, and SnQ are typical TCOs as they have large fundamental band gaps ren
dering these materials transparent into the ultraviol&f)(§pectral range. Due to their very large
gaps, especially MgO and Sj@re transparent into the far UV. The gaps can be modified, e.g.
by alloying ZnO with MgO or CdO (see Ref. 3 and referencesetingy but also by varying their
chemistry, for instance when going from Sp® SnO? Free carriers, introduced by intentional
as well as unintentional doping, are the reason for theirar&able conductivitie8.Prominent
examples are aluminum-doped Z&@n-doped indium oxidé,antimony-doped Sngf:2 or even
zinc-indium-tin oxidetO

Bulk TCO materials attract great attention due to their @umging opticak electricalll=13
and electrochemicHt properties combined with excellent hardness and envirotahstability:
This renders them highly interesting for applications angparent front contacts for solar
cells211.15.1655 next-generation gate oxides for Si-based electréfiasd in electrodes for pho-
tocatalytic water splitting® Surfaces of the TCOs are highly interesting since for thassectron
accumulatioh®=2! as well as its depletidd have been observed. Exploring the atomic structure
and the termination of surfaces of such oxides is still stthjé current researc®=2° In addi-
tion, the properties of the TCOs are drastically modified mvitteey are prepared as nanobéfts,

nanotubeg/ nanoribbon£® nanowire<? and nanoparticle®

Even though the TCOs are highly interesting for these regsbair most desirable widespread
application in semiconductor electronics, for instanc@ight-emitting) diodes, is currently ham-
pered by the lack of stable and reproducipieype TCOs. For other photovoltaic or optoelectronic
devices a deep understanding of intrinsic key propertiegecessary. In this context, especially
the electronic band structures around the fundamental graibe effective electron masses have
to be thoroughly described. Also the optical-absorptioopprties near the band-edge and their
dependence on the light polarization (due to dipole sealactiles) need to be understood. For the
TCOs a plethora of experimental results is avail&b however, their interpretation can be chal-
lenging, for instance, due to sample-quality issues thpedé on the manufacturing technique,
the substrate temperature during growth, or the post-dmpotreatmeng? In the case of IOz,

growth can be phase selective and lead to both cubic as wetlomsbohedralrf) polymorphs
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with band gaps differing by as much as 0.7 #\in the case of ZnO (see Ref.|35 and references
therein), but also for SniXsee Refs. 36—38 the details of the valence-band orderith¢gherband

symmetries are not unequivocally determined from expartme

Due to the continuous development of sophisticated methadsalgorithms as well as the
increasing power of today’s supercomputers, the the@lat&scription of such material properties
has made substantial progress during the last years. Theade@arameter-free description of
the quasiparticle (QP) electronic structures and the #rgy-dependent dielectric functions of
complex materials (see the reviews in Refs.|39-42 and mefesetherein) has become possible
and leads — hand in hand with modern experimental technigtea deep understanding. Many-
body perturbation theory is used to take the excitation@sgemportant experimental techniques
into account and can be applied to compute the electronispectral properties of bulk oxides
in a given ideal crystal structuf&=6 but also for alloys:4’ oxide systems with defect§;° and
n-type TCO0-52

In Sec[1) of the present paper we summarize the theoretichtamputational approaches that
we used to compute QP band structures and the optical alwsogbtvarious oxide materials. We
present the corresponding band structures and providéedkaformation about band gaps and
effective masses in Selc.llll. The line-shape and the osmiltrength of the optical absorption

edges are discussed in Sedl V. Sediion V summarizes thewrg@aper.

[I. THEORETICAL AND COMPUTATIONAL APPROACH

The present review paper focuses on the description ofezksitate properties, such as the
guasiparticle (QP) electronic structure and the opticabgttion spectrum, for different oxides
by means of amab-initio framework. Their ground-state properties and, in pardicudetermining
the equilibrium atomic geometries, e.g. within densitpdtional theory (DFT$3:24 are not part
of the present work. For more information about that as welhlaout all computational details
we want to point the reader to Talble |, which indicates thergfce(s) in which the respective

calculations are presented in more detail.



A. Quasiparticle electronic structures

Important experimental techniques such as (inverse) phexttyon spectroscopy or X-ray ab-
sorption and emission studies probe excited-state pliepart a material, since during these pro-
cesses an electron is added to or removed from the systenceHen® ground-state description
provided by a Kohn-Sham (KS) scheme within DFT is not suffiienstead, QP effects have to
be taken into accour® (Mis-) interpreting the KS eigenvalu¥sas excitation energies, typically
leads to too small band gaps and wrong band dispersisiace the KS eigenvalues neglect the
excitation aspect that is characteristic for the expertaleiechniques that are used to measure

these quantities.

Electronic excitations can accurately be treated by ctyreélescribing the electronic self en-
ergy 2. Expressing: as the product of the Green’s function of the electr@Gand the screened
Coulomb potentialV, as it was introduced by L. Hedin in 198527is an essential simplification
of the description by neglecting vertex corrections. Nehaless, the fully self-consistent solution
of the resulting QP equation is very demanding from a contfmrtal point of view. For that rea-
son it is common to rely on perturbation theory to compute Q&rges in practice: In th€&,\Wp
scheme first-order QP corrections are calculated for theneajues of some starting electronic
structure. It is immediately clear that any initial electiostructure must not be too far from the

final results for first-order perturbation theory to be sigfnt.

We found that the range-separated HSE06 hybrid functi@hbyt with a range-separation
parameter of A5 a.u-l, as suggested by Paiet al.2?:%0 reasonably fulfills this requirement
for several oxide43-42.61.62|n this work we review results for different TCOs that rely tire
HSE functional to obtain the starting electronic strucsui@ the GoWp calculations; the entire
approach is called HSE3pW in the following. To keep the computational effort reasdeand
since spin-orbit induced shifts are smaller than the QPections, we assume that the influence
of the spin-orbit interaction on the QP corrections is rgggle. Therefore, we take the spin-
orbit interaction into accouft only when calculating the HSE electronic structure and tyssly
the QP corrections calculated for spin-paired electf8r¥ Overall, we expect the QP energies

calculated by the scheme outline above to be convergednathout 01 eV.

A shortcoming of the HSE®oWy approach is its large computational cost. This becomes par-
ticularly problematic for the calculation of optical spexti.e., when significantly more-points

have to be taken into account for converging, for instanioe,nhacroscopic dielectric function
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around the absorption edge. In these cases we pursue ediffgopproach by approximating
the results of the HSE3yW, calculations via a DFT#+A method341:43=45.6lhere the term
“DFT” indicates that either the local-density approxinoatiin the case of Sn£and SnO) or the
generalized-gradient approximation (for MgO, ZnO, and Cd@sed. Thereirl), which denotes
the additional Coulomb interaction term within the DRT approact®>:%%is adjusted such that the
energy position of the bands matches the HSEwW result. In additionA describes a scissors
operato?”’ that rigidly shifts all conduction bands so that the fundatakgap becomes identical
to the HSE-GoW value.

The HSE+®oW, as well as the DFTW+A calculations are carried out using the Vienna Ab-
Initio Simulation Package (VASF$='° The wave functions are expanded into plane waves and

the electron-ion interaction is described via the projeatmgmented wave methdé.’?

B. Optical absorption

In optical-absorption experiments excitation energiessaudied that are not high enough to
remove electrons from the system. Instead, upon the itradisvith light, an electron that gets
excited from the valence bands into the conduction bandsetebehind a hole in the valence
bands. Due to their opposite charge, the photo-createdamaléhe excited electron interact via
the screened Coulomb attraction, leading to the formatfagxocitons in the material. Excitonic
effects due to the electron-hole interaction can, for mstabe taken into account in the-initio
description by solving a Bethe-Salpeter equation (BSEjHerptical polarization functiof$:4

For its numerical solution the BSE is typically rewritteridran eigenvalue problem for the
electron-hole pair Hamiltoniaff. We use the KS eigenstates from the DEFFHA calculation to
compute the matrix elements of the statically screened dollattraction of the electrons and
the holes as well as of the unscreened exchange-like tetradbaunts for local-field effectd:’>
The DFTH#J+A KS eigenvalues are used to describe the transition eneofjieen-interacting
electrons and holes. The corresponding optical transitiatrix elements are computed using the
longitudinal approximatiof® After constructing the excitonic Hamiltonian, its eigeatss and
eigenvalues can be used to calculate the optical propeftiee systend./="°

The converged calculation of the optical absorption spectin the vicinity of the band edge
requires a large number kfpoints#3:89Since for some of the materials discussed in this work the

lowest optical transitions are confined to the vicinity of thpoint, this part of the Brillouin zone
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(BZ) can be sampled more densely to obtain convergence éoatisorption edg® we employ
hybrid k-point meshe¥ to achieve that goal. However, the computational cost ajatializing
the resulting excitonic Hamiltonian matrices with rark®f up to~ 100,000 is much too high.
Therefore, in this work an efficient time-evolution schéfrie employed to calculate the dielectric
functione(w) from the excitonic Hamiltonian.

When very densk-point meshes are used, the large computational cost pretaking enough
conduction bands into account for including high-energtiaa transitions. This, however, be-
comes necessary to obtain converged results for the reabpafw) at low photon energies due
to the Kramers-Kronig relatié® between the real and imaginary parts. Therefore, as deskirib
detail in Refs. 43 and 45, we also solve a BSE using a moreekagrsint mesh to include optical
transitions at intermediate energies. In addition, thé&captransitions lying above this BSE cutoff
are included (up to 200 eV) on the KS level. Finally, the apton coefficientor (w) is calculated

from the resulting dielectric function.

1. QUASIPARTICLE ELECTRONIC STRUCTURES

The QP band structures calculated using the HS# approach are depicted for MgO, ZnO,
CdO, SnQ@, SnO, Ip03, and SIQ in Fig.[1. For the oxides studied in this work the uppermost
valence bands are derived from @ &tates and the lowest conduction-band states originate fro
s states of the respective metal catfSn.

In addition, from Fig[ it is obvious that MgO, ZnO, SpAn,03, and SiQ are direct semi-
conductors with the fundamental band gap atlih@oint; the two monoxides CdO and SnO are
found to be indirect semiconductors. While in CdO the cotidneband minimum occurs at the
I point and the maximum of the valence bands occurs away Frothe situation is different for
SnO. In this material the valence-band maximum is locatddaid the conduction band shows
a pronounced minimum at thé point of the BZ, whereaF is anM; saddle point for the low-
est conduction band (cf. Figl 1). The direct and the indif@Btband gaps of these oxides are
compiled in Tabléll. These results for the electronic duites have been carefully compared to
experimental dafd:24=87(see also Tablé | for the corresponding references) andgtieement is
found to be rather good.

From Tablé Il it also becomes clear that all the oxides stlifi¢his work, with the exception

of rocksalt- ¢(s) CdO and litharge-I{) SnO, have fundamental band gaps that are large enough
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for visible light not to be absorbed by the intrinsic matksigEven though the direct gaps at the
I point are as large as 1.81 ex6{CdO) or even 3.21 eMt(-SnO) the indirect gaps of these two
materials are much smaller. Hence, phonon-assisted bptsarption can occur in the visible
spectral range for samples of both materials. In additiothé case oft-SnO the smalleddirect
gap of only 2.68 eV occurs at ti\ point of the BZ.

The HSE+W results are used to derive the effective electron masseg different direc-
tions in the BZ via parabolic fitting to the QP band structundle close vicinity of thé point (the
M point in the case of SnO). We refer the reader to the liteedturthe effective masses that have
been derived for thes polymorphs of MgO and Cd€P, rt-SnG,** rh-In,03,87 or the wurtzite
(w2) polymorphs of MgO, ZnO, and Cd€3:5? For beta-cristobalite-) SiO», effective electron
masses ofry (Mcem)=0.57, mi (M'cem)=0.58, andmi (F'cem)=0.57 are obtained and in the case
of [t-SnO, the conduction-band minimum at thepoint of the BZ leads to electron masses of
ma(Mcem)=0.37 andmi (Mcem)=0.49 (all in units of the free-electron mass). We also ussgh
values to derive the harmonic mean values of the electrosesdsr all the oxides (cf. Tablg II).

In the case ofs-MgO*® we find a small anisotropy (indicating that the bands are tritly
parabolic within thek range used for the fit) and the two twofold degenerate valbacels are
heavy-hole related (cf. Tablellll). Their masses are of #maes order of magnitude in all three
high-symmetry directions and are, roughly, one order of mtage larger than the values for the
light-hole band. Also the lowest CB turns out to be almostrigac. As withrs-MgO, the two
uppermost valence bandsrisCdO are heavy-hole bands and the third one is of light-tyge$®
Since forrs-CdO the valence-band maximum occurs away fromtip@int in the BZ, the values
for the effective mass of the uppermost two valence bandsegative along certain directions in
k space (cf. TableIll). This has been traced back to the factitbpd hybridization is forbidden
atl” due to the's lattice symmetry*>88n this material holes are expected to occur at the valence-
band maximum betweeld andl". We observe that the effective electron massegt&iO, are
very isotropic; the anisotropy of the ones forSnO (at theM point of the BZ) is slightly larger.
Comparison to experimental or other theoretical resulgbvisn in Refsl 44, 45, and 87.

From Table_ ]l it becomes clear that the electron masses fodiffierent oxides decrease by
almost a factor of two going along the row MgO, ZnO, Sn@,03, and CdO. Contrary, the
values of the electron masses for SnO and,Si€@ larger than for the other oxides. Again, we
want to emphasize that the parabolic approximation is auli§lléd in the close vicinity around

thel point. From our calculations of the effective electron neasse conclude that the electron
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mobilities should be large irs-CdO, rh-In,03, and rutile- (t) SnG, with the ones of the other
oxides being up to a factor of 2.7 smaller.

In addition, we used the electronic structures derived ftbm HSE+£5,Wy approach also
for the derivation of the charge-neutrality levels and, deenthe band alignment for different
materials*®89-21Fyrthermore, the HSE3pW, approach has successfully been applied to describe
nitride systems:22=95 gnti-ferromagnetic transition-metal oxid&s’® biaxially and uniaxially

strained ZnG*?:54and the non-equilibriurwz polymorphs of MgO and Cd@?:62

IV. OPTICAL ABSORPTION

The optical absorption coefficients calculated from theisoh of the BSE fors-MgO, wz
Zn0O, rs-CdO, rt-SnG,, andlt-SnO are depicted in Figl 2. We found that the inclusion of-exc
tonic effects in the description is critically important fine TCOs as they (i) dominate the spec-
tral features around the absorption orfSef2:61.864and (ii) strongly influence the overall spectral
shapet3:4>

As a consequence, a pronounced excitonic peak is visibisdrthe absorption onset, in par-
ticular, ofrs-MgO andrt-SnG; [see Fig[2(a) and (d)]. Such a peak also occurs at the onse of
absorption fowzZnO even though this is not as obvious from Fif. 2(b) due éstale of this
plot. Contrary, the influence of such an excitonic boundestasignificantly smaller fors-CdO
andlt-SnO [cf. Fig[2(c) and (e)]. One reason is that these two nad¢ehave indirect fundamen-
tal band gaps and, in addition, the electronic dielectnieesaing is significantly stronger for these
two semiconductors which is why the excitonic effects ackioed.

The influence of the electron-hole interaction on the oVvéra shape is referred to as redistri-
bution of oscillator strength in the literature. For all thiades, peaks at higher photon energies are
red-shifted due to the excitonic effects by about.12 eV3=4%In addition, a strong enhancement
of the peak intensities and plateau heights due to the Cdulateraction occurs at low photon
energies.

Comparing the dielectric functions calculated from theusoh of the BSE to experimental
results has shown a very good agreement, for instance, f@,MgO, and Cdd24° but also
for SnG.24 Peak positions and relative peak heights are very well destiby the calculations
for these materials. We want to point out that the scissoesatprA, that is used to mimic the

QP gaps, does not reproduce the energy dependence of thenesdfy operatoE. Hence, we
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find a general trend of a slight underestimation of the enpogjtions of the higher-lying CB®

In addition, the absolute value of the absorption coefficiems out to be underestimated in the
calculations (e.g. for Zn®), which can be explained, for instance, by imperfect sampiaereas
our calculations describe defect-free crystals.

By linearly extrapolating the slope of the absorption cerie. Fig.[2) around the half max-
imum of the onset to zero absorption, we obtained the optjapk of the oxides compiled in
Table[ll. We want to point out the strong (noticeable) optaraisotropy oflt-SnO andrt-SnG,
(wzZnO). In the case ofs-MgO andwzZnO the optical gaps are significantly smaller than the
QP gaps also given in Tablg Il. For these two materials tHferéince arises mostly due to the
binding energies of the lowest bound excitonic st&$8%that reduces the optical gaps with re-
spect to the QP gaps. In addition, the Lorentzian broadeofi@yl eV, which is used to account
for temperature, instrumental, and lifetime effects,Hartleads to a reduction of the optical band
gap in our calculations. Both the broadening effect as vgelha exciton binding energy also play
a role forrt-SnQ,.. However, as elucidated in Ref./44, the optical transitioetsveen the upper-
most valence-band and the lowest conduction-band stagediwmle forbidden in this material,
consequently, the optical gap is found to be much larger tiheu@P band gap (cf. Tallé ).

In the case ofs-CdO andt-SnO the optical gap is found to be in between the lowestaatlir
and the lowest direct QP gap. For these two materials theadred screening is much larger which
is the reason why there occurs no pronounced peak due to d leaaitonic state at the absorption
onset. Nevertheless, excitonic effects are responsibléh@optical gap being smaller than the
lowest indirect gap for CdO, in addition to the broadenirgg(above). In the case bfSnO, the
LDA+U+A description of the uppermost valence band atNheoint of the BZ differs by 0.73
eV from the HSE-6oW result. This explains why the optical band gap found in olewdations
turns out to be underestimated by this amount; also an irfeien the line shape of the spectrum
cannot be excluded and will be further investigated in tharti

The results for the dielectric functions obtained from tbkigon of the BSE have also been
used to compute reflectivities as well as the electron-gniags functions for MgO, ZnO, and
CdO#345 For these materials we identified valence and conductiomt-bevels (as well as their
atomic origin) that are involved in the transitions thatsathe main peaks of the spectra. The low-
est eigenstates of the excitonic Hamiltonian have beenleaér for Mg®© as well as (strained
and unstrained) Zn€& In the case of AIN and CaO the BSE approach helped to ideridy t

importance of van Hove singularities and of the excitonfeas for the absorption specf#.
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V. SUMMARY

In this paper the quasiparticle band structures of MgO, ZG@0O, SnQ, SnO, 103, and
SiOy, calculated using the HSEpWp approach, have been presented. For these different oxides
we conclude that our results agree well with experimentdirigs, regarding, for instance, funda-
mental band gaps and band dispersions or effective elegtamses. In addition, we presented the
optical absorption spectra of MgO, ZnO, CdO, Snhénd SnO. We showed that for these oxides
the impact of excitonic effects is significant and has to lkenanto account in the calculations.
We find that this task can be successfully accomplished byrgpthe Bethe-Salpeter equation.
For SnO we conclude that the LDAHA approach does not reproduce the H&Wp results
well enough, hence, a reliable parameter-free descriptiohe optical properties requires future
effort.
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FIG. 1. Quasiparticle band structures in the vicinity of thedamental gap of (a) MgO, (b) ZnO, (c) CdO,
(d) SnQ, (e) SNO, (f) InO3, and (g) SiQ calculated using the HSERWp approach. The valence-band

maximum has been set to zero energy.
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FIG. 2. (Color online) Absorption coefficient (in 1@8m~1) around the fundamental band gap for different
oxide semiconductors as calculated from the solution oftbthe-Salpeter equation. Black (red) curves

represent ordinary (extraordinary) light polarization.
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material

ground state

excited state

MgO, ZnO, CdO
SnG
SnO

In203

ngznlfxo, Cd(zn]_,XO

SiO,

Refs. 45 and 88

Ref. 44

Refs. 24 and 97

Ref. 87
Refs. 45 and 4
Ref. 98

Refs. 43 and 45
Ref. 44
Refs. 24 and 97
Ref. 87
Refs. 3 and 45
Refs. 91 and 98

TABLE |. For each material the references are given thatainnmnore information on the calculations of

the ground-state and the excited-state properties thaeegieved in this work.
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Egir (N Eigndir EgbsL EngH mg
rs-MgO 7.49 - 6.95 6.95 0.38
wzZnO 3.21 - 2.96 3.00 0.30
rs-CdO 181 0.68 1.73 1.73 0.21
rt-SnQ 3.65 - 4.13 4.75 0.23
[t-SnO 3.21 0.16 1.79 2.29 0.42
rh-1n,O3 3.25 - - - 0.22
B-SiO; 8.76 - - - 0.57

TABLE II. Direct [E{"(I")] and indirect EJ'Y") QP band gaps as well as optical band gaps for ordinary
(ESbSL) and extraordinaryH\E,”‘bSH) light polarization are given in eV. Harmonic mean valuesiie effective
electron masses;, derived from the HSEGWp band structure (HSE band structure form?®’), are given

in units of the free-electron mass.
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rs-MgO rs-CdO
m;‘((l'gc) 0.36 0.19
m*K(I'gC) 0.42 0.25
m{(rgc) 0.36 0.19
mi(Tg,) 1.85 4.85
mi(Tg,) 453 ~1.35
m; (Cg,) 3.21 ~1.98
m (Ms,) 1.61 2.33
m (Ms,) 1.65 352
m (Tg,) 2.37 ~3.63
my(Mev) 0.44 0.36
mi(Tg,) 0.44 0.38
m (Tg,) 0.36 0.24

TABLE IlIl. Effective massesn* (in units of the free-electron mass) at the BZ center along the—X,

I'-K, andl —L directions forrs-MgO andrs-CdO. Values are given for the lowest conduction band and

the uppermost valence bands.
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